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Abstract: The first article in this two-part series described the properties and use of hydraulic cements for intra-coronal applications, 
mainly for vital pulp therapy and as a barrier for regenerative endodontic procedures. In Part 2, the intra-radicular and extra-radicular 
uses are discussed. Hydraulic cements are a unique set of materials that set in the presence of water and, when set, they are resistant to 
deterioration in a damp environment. The use of hydraulic cements within the root canal (root canal sealer and apical plug) and when used 
at the periodontal–endodontic interface (perforation repair and root-end filler) is described and illustrated with clinical cases.
CPD/Clinical Relevance: Hydraulic cements are indicated for a number of procedures in endodontics and this is supported by an extensive 
and increasing body of evidence with respect to their efficacy.
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Hydraulic cements are unique materials that set 
in the presence of water and do not deteriorate 
when placed in a damp environment. 
As a result, their use is becoming more 
commonplace in contemporary endodontics. 
Hydraulic cements have been classified based 
on their specific use1 as their environmental 
interactions are dependent on the location they 
are placed in. They can be used intra-coronally 
(pulp capping and barrier regenerative 
endodontics), intra-radicularly (root canal 
sealer and apical plug) and extra-radicularly 
(perforation repair and root-end filler). 

The first article in this two-part series 
described the development, material chemistry 
and hydration of the hydraulic cements, and 
also illustrated the clinical use of intra-coronal 
materials. The use of hydraulic cements used 
as sealers, apical plugs, root-end fillers and 

perforation repair materials, each illustrated with 
clinical cases, are discussed in this article.

Intra-radicular materials
The intra-radicular materials include the root 
canal sealers and the materials used for apical 
plugs. The properties of these materials are very 
diverse. The requirements of hydraulic cements 
used for intra-radicular indications are shown in 
Table 1. 

Examples of hydraulic root canal sealers 
include BioRoot RCS (Septodont, Saint-Maur-
des-Fossés, France), which is a Type 4 material, 
and Totalfill BC sealer (FKG, La Chaux-de-Fonds, 
Switzerland), a Type 5 material.1 This classification 
is described in detail in Part 1.2 The materials 
used for apical plugs can be various, with 
ProRoot MTA (Dentsply-Sirona, Tulsa, OK, USA) or 
Biodentine (Septodont) being examples. 

Material chemistry
Totalfill BC sealer (FKG) and BioRoot RCS 
(Septodont) are classed as different material 
types since the latter needs to be mixed with 
water for hydration while the former is ready-
mixed and will hydrate after contact with 
the environmental liquids. Both sealers are 
composed primarily of tricalcium silicate and 
zirconium oxide as the radiopacifier. The liquid 
in BioRoot RCS (Septodont) is composed of 
water, calcium chloride and a hydro-soluble 
polymer.3 In addition to the tricalcium silicate 
and zirconium oxide, Totalfill BC sealer (FKG) 
also includes calcium phosphate and a non-
aqueous vehicle.4 

Material properties 
BioRoot RCS (Septodont) is mixed with water 
and thus, its setting time of 324 (±1) minutes 
is controlled.5 Totalfill BC sealer (FKG) does not 
have a fixed setting time because it depends 
on the environmental moisture.3 Both hydraulic 
sealers have been reported to have high 
solubility,5,6 which increases with time, but has 
been attributed to improper in vitro testing of 
the materials.7,8

The calcium ion release also varies between 
the different sealers. The water-based sealer 
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BioRoot RCS (Septodont) exhibits a higher calcium 
ion release compared to Totalfill BC sealer (FKG), 
which depends on the diffusion of ions through 
a non-aqueous matrix that delays, or restricts, the 
calcium ion formation and release.4 Furthermore, 
the presence of calcium phosphate monobasic 
in Totalfill BC sealer (FKG) also modifies the 
hydration reaction.9

The biological characteristics of sealers are 
important since they are in contact with the 
periodontal ligament and the bone in the apical 
region. Thus, both the biological properties 
of the sealer itself and that of any elutions are 
important. Elutions and even direct seeding of 
cells over the materials showed a high degree of 
cell proliferation.10–14 The cytotoxicity was dose 
dependent.12 Comparison of different pre-mixed 
materials shows that the material chemistry 
influences the cell viability, cell attachment 
and cell migration rates and this was higher for 
materials releasing higher levels of calcium.15,16 
The hydraulic sealers also have an osteogenic17,18 
and an anti-inflammatory effect.19 Both Totalfill 
BC sealer (FKG) and BioRoot RCS (Septodont) 
have been shown to be antimicrobial.19–22 There 
is a synergistic antimicrobial effect when sodium 
hypochlorite solution and hydraulic sealers are 
used in combination.23 Prior dentine disinfection 
is necessary as the use of sodium hypochlorite 
over the dentine enhances the effect of the 
hydraulic sealers.  

The Type 4 hydraulic calcium silicate-based 
sealers (such as BioRoot RCS, Septodont) are 
recommended for use in cold condensation 
techniques, such as the laterally condensed 
technique or single cone obturation. These sealers 

are water based, and the heat generated during 
warm vertical compaction will evaporate the 
water in the sealer leading to irreversible changes 
in the chemical and physical properties.3 Totalfill 
BC sealer (FKG) is not affected by the rise in 
temperature24,25 as both the inorganic components 
(tricalcium silicate and zirconium oxide) and 
the organic vehicle are impervious to the heat 
generated during the obturation procedure; 
thus this sealer can be used for warm vertical 
compaction of gutta-percha techniques. 

The hydraulic cement sealers have not been 
shown to bond to gutta-percha. Interaction of 
hydraulic sealers with root dentine results in 
the mobilization of silicon from the sealer to the 
tooth structure.26 As the sealer comes in contact 
with pre-treated dentine, the irrigation protocol 
for optimal sealer interaction is thus important. 
The reported bioactivity when hydraulic cements 
interact with phosphate-containing solutions, 
such as tissue fluids, has led to a drive to use 
phosphate-buffered saline as the final irrigating 
solution. However, this will lower the surface 
pH of the sealer and will lead to a reduction in 
its antimicrobial action.22 Sodium hypochlorite 
solution potentiates the antimicrobial effect of 
hydraulic sealers.23 EDTA is effective in removing 
the smear layer, but since it is a calcium chelator, it 
will cause chemical alterations to the sealers upon 
contact.27 The pushout bond strength of hydraulic 
sealers was also reduced in the presence of EDTA.28

Presentation of root canal sealers
BioRoot RCS (Septodont) is supplied as a powder 
and a liquid form that must be mixed by hand for 
1 minute. The master apical gutta-percha point 

may then be coated sparingly with the root canal 
sealer before being inserted to length in the 
root canal (Figure 1a). Totalfill BC sealer (FKG) is 
supplied as a single syringe, and it is delivered 
through a plastic cannula that enables deep 
penetration inside the root canal (Figure 1b).  

Clinical cases 

Endodontic sealer 
An 18-year-old patient with a history of trauma was 
referred with asymptomatic chronic peri-radicular 
periodontitis in UL1. The tooth was discoloured 
and had been previously root canal-treated with 
a screw post-retained composite resin to restore 
the missing tooth structure. The screw post was 
removed, and the tooth was root canal re-treated. 
A GP cone matched to the master apical file was 
used to obturate the root canal using a single 
cone obturation technique with Totalfill BC sealer 
(FKG) (Figure 2).  

Apical plug
A 45-year-old female patient was referred for 
specialist treatment on UL1. The tooth had been 
asymptomatic, but on pre-operative investigation 
prior to replacement of the unsightly crown, 
an open apex and associated peri-radicular 
radiolucency were discovered. The root canal 
was accessed and chemo-mechanically prepared 
using sodium hypochlorite and manual canal 

Essential requirements

 Dimensionally stability
 Adequate radiopacity 
 Ability to form a seal with dentine
 Non-irritant to the peri-radicular tissues (biocompatible)
 Ability to induce peri-radicular healing
 Antimicrobial
 Easy to mix and handle
 Chemically and physically compatible with other restorative materials that may be 
    required to obturate the root canal, such as gutta-percha

Additional characteristics for root canal sealers

 Low viscosity and ability to flow, acting as a lubricant for the insertion of the master 
    apical point 
 Not be adversely affected by obturation techniques that employ heat2

Table 1. The essential requirements for both apical plug materials and root canal sealers, and 
additional characteristics that root canal sealers need to exhibit.

Figure 1. Material presentation (a) BioRoot RCS 
(Septodont) showing the powder, scoop and pre-
dosed pipettes and (b) syringe and cannula of 
Totalfill BC sealer (FKG).

a

b
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preparation at the first visit. An apical plug of 
Biodentine (Septodont) was placed and backfilled 
with thermo-plasticized gutta-percha (Gutta Percha 
Obturator, DiaDent, Chungcheongbuk-do, Korea) 
at the second visit. Although the Biodentine is not 
as radiopaque as gutta-percha and mineral trioxide 
aggregate (MTA), it is the most suitable material to 
use, particularly in anterior teeth owing to the risk 
of tooth discolouration with MTA.29,30 The patient 
was recalled after 6 months and a peri-apical 
radiograph was taken that clearly showed a partial 
resolution of the lesion with the onset of bony infill 
(Figure 3). The use of hydraulic cements as apical 
plugs has enabled the endodontic management 
of immature teeth with non-vital pulps to be 
performed in one to two visits, with the single 
visit showing a slightly higher success rate when 
compared to the two visits31 as opposed to long-
term calcium hydroxide therapy. 

Section summary
Hydraulic cements may be used successfully in 
the root canal system, namely as a root canal 
sealing material and placed as an apical plug. 
The requirements for the materials in these two 
situations are very different. The sealers need 
to have an adequate flow and film thickness, 
while apical plugs are used in bulk and need to 
be compactable. The antimicrobial properties 
are important for both material types with 
the biological properties and the mineralizing 
ability being more important for apical plugs. 

Extra-radicular materials
The extra-radicular use of hydraulic materials 
includes root-end surgery as root-end fillings 
and surgical repair of root perforations. The same 
hydraulic cements that are used for the non-
surgical repair of root perforations and for apical 

plugs (as previously described) may be used. 
These materials have been classified as extra-
radicular materials, because, although they are in 
contact with root dentine, most of the material 
is in contact with blood and tissue fluids. The 
requirements of the materials used for these 
indications are listed in Table 2.

For both indications, MTA (eg ProRoot MTA, 
Dentsply-Sirona) or premixed materials such as 
TotalFill BC (FKG) may be chosen. Biodentine 
(Septodont) has also been used successfully for 
such procedures.32

Presentation of materials used for extra‑radicular 
procedures
Some formulations of MTA, such as ProRoot MTA 
(Dentsply-Sirona) and MTA Angelus (Angelus, 
Londrina, Brazil) are provided as a powder and 
a liquid to be mixed together on a glass slab. 

a			           b			                     c				        d

a			           b			                     c				    d

Figure 2. (a–d) Clinical case showing suboptimal obturation in UL1. The tooth was root canal re-treated and obturated with a matched GP cone and Totalfill 
BC sealer (FKG) using a single cone obturation technique.

Figure 3. (a) UL1, which had been restored with a metal-ceramic crown, has an incompletely formed root apex and an associated peri-apical radiolucency. 
(b) It was root canal treated and (c) an apical plug of Biodentine (Septodont) placed. (d) Radiograph was taken at the 6-month follow up appointment with 
healing of the peri-radicular tissues evident.
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The powder to liquid dosage provided by the 
manufacturer should be maintained, and the 
use of smaller amounts than that provided in 
the sachet with undetermined quantities of 
liquid is discouraged. The addition of more 
water than instructed by the manufacturer will 
lead to deterioration in the physical properties 
of the material.33–35 These formulations contrast 
with TotalFill BC RRM (FKG), which is pre-mixed 
and is applied directly at the site. This product is 
available in three formats, namely putty, fast-set 
putty and a paste supplied in a syringe with a 
narrow-bore, tipped plastic cannula for ease of 
application. Delivery to the surgical site is usually 
made using an MTA carrier (Figure 4a), which can 
be used with a number of angled tips or the use 
of a MTA pellet block (Figure 4b), which makes a 
pellet of the material to be carried to the surgical 
site on the tip of an endodontic plugger. 

Material chemistry
Materials that are used for surgical procedures 
can be Type 1–5.1 ProRoot MTA (Dentsply-

Sirona) is a Type 1 material composed of Portland 
cement and bismuth oxide as the radiopacifier, 
which is mixed with water to form calcium 
silicate hydrate, calcium hydroxide and ettringite/
monosulphate.36–38 The hydration proceeds by the 
formation of calcium silicate hydrate that coats 
the cement particles, and calcium hydroxide is 
deposited in the cement matrix and leached in 
solution (Figure 5). 

MTA Angelus (Angelus) is also composed of 
cement and radiopacifier. The material is different 
from ProRoot MTA (Dentsply-Sirona) in that the 
radiopacifier is calcium tungstate and is not 
associated with the tooth discolouration seen with 
bismuth oxide.29,30,39–45 Furthermore, MTA Angelus 
(Angelus) also contains calcium oxide, which 
modifies the hydration reaction. This is not added 
by the manufacturer, but results from the burning 
process during the cement manufacturing.46 

The TotalFill BC root repair materials (RRM) 
(FKG) are composed of tricalcium silicate, zirconium 
oxide, tantalum oxide, calcium phosphate 
monobasic and a non-aqueous vehicle.47,48 The 

hydration of the tricalcium silicate results in the 
formation of calcium silicate hydrate and calcium 
hydroxide. Zirconium oxide and tantalum oxide 
are included as radiopacifiers, and calcium 
phosphate monobasic is a source of phosphate 
ions to enable biomineralization. This can lead 
to a reduction in the calcium ion release by 
the materials.9 

Material properties
An adequate radiopacifier is important in 
surgical procedures to enable radiographic 
visualization on recall. Thus, materials that show 
a high radiopacity are preferred. These include 
ProRoot MTA (Dentsply-Sirona),49 which has 
bismuth oxide as the radiopacifier, and TotalFill 
BC root repair materials (RRM) (FKG),50 which 
also has sufficient radiopacity. Setting time is 
not a main consideration for root-end fillers, 
but rather the ease of delivery and handling, 
which has been addressed by the pre-mixed 
Type 5 materials that can be syringed to the 
surgical site. 

The physical properties that are crucial 
for materials used during surgery are their 
solubility, dimensional stability and washout. The 
solubility of MTA has been shown to range from 
negligible49 to high (22–31%),51,52 dependent 
on the water–powder ratio. The addition of 
more water to MTA increases its solubility.51,52 
The dimensional stability of root-end filling 
and perforation repair materials is important as 
any shrinkage can lead to a gap between the 
material and the tooth, with the risk of microbial 
recolonization, while expansion may lead to root 
fracture. MTA was shown to be dimensionally 
stable even when the water–powder ratio was 
varied.53 This contrasts with other data that show 
cement shrinkage, particularly in the early stages 
of setting, and that physiological-based solutions 
affected the setting of the materials.54

Washout is also an important characteristic 
for root-end filling and perforation repair 
materials. This can be short term, which happens 
when the area where the material is placed is 
irrigated prior to flap closure or a restoration is 
placed, or long term by the action of the body 
fluids on the materials. The washout resistance 
of MTA was shown to be low.54–57 A number of 
products include an anti-washout gel as a mixing 
liquid, replacing water (Neo MTA Plus, NuSmile, 
Houston, TX, USA), which increases the washout 
resistance of the cements. 

The biological properties of extra-radicular 
materials are very important, and these are very 
well investigated for MTA. MTA in contact with 

 Dimensional stability 
 Coefficient of thermal expansion close to that of dentine
 Adequate radiopacity 
 Ability to form a seal with the dentine
 Non-irritant to the peri-radicular tissues (biocompatible) 
 Not be adversely affected by moisture, so can be used in wet environments 
    without detriment
 Antimicrobial
 Easy to mix and handle
 Quick setting, particularly when used for perforation repair
 Chemically and physically compatible with other restorative materials when used for
    perforation repair

Table 2. Requirements of materials that may be used for extra-coronal indications.

Figure 4. (a) MTA carrier and various tips (Produit 
Dentaires, Vevey, Switzerland). (b) MTA pellet 
block (G Hartzell & Son, Concord, CA, USA).

Figure 5. Scanning electron micrograph of 
MTA showing the cement particles coated by 
the reaction by-product and cement matrix 
composed of calcium silicate hydrate, calcium 
hydroxide and bismuth oxide. (Reproduced with 
permission from Camilleri.80)  

a

b
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peri-radicular tissues resulted in the expression 
of inflammatory mediators and cytokines at 
certain times,58 which is similar to Biodentine 
(Septodont)59 and worse than TotalFill BC RRM 
(FKG).60 MTA used as a root-end filling material 
caused less peri-radicular inflammation fibrous 
capsule formation. In addition, the presence 
of cementum on the surface of MTA was a 
frequent finding.61,62 The presence of infection 
and bacteria led to compromised healing in 
cases of root perforation.63 

The Type 5 pre-mixed materials also 
exhibited good cell viability comparable to 
MTA,64,65 but showed reduced cell viability in 
the early ages when compared to MTA Angelus 
(Angelus).66 This could be attributed to the 
time taken for the environmental moisture 
needed for hydration of pre-mixed materials to 
hydrate the tricalcium silicate. Perforation repair 
materials need to be more antimicrobial as 
they are in contact with contaminated dentine. 
MTA exhibits antimicrobial properties.67,68 
The presence of blood contamination has 
a buffering effect on the MTA, and ProRoot 
MTA (Dentsply Sirona) was shown to be less 
antimicrobial when in contact with blood.69 
Interaction of MTA with blood results in 
the deposition of calcium carbonate on the 
material surface.70 Similar findings were 
shown for TotalFill BC RRM (FKG) when used 
as a root-end filling material.47 The presumed 
bioactivity, where calcium phosphate crystals 
are precipitated on the material surface,71 is an 
in vitro phenomenon only, and has never been 
demonstrated clinically. 

When MTA is used to repair perforations 
in the crown of the tooth, it will subsequently 
come into contact with other materials required 
to provide the definitive restoration. If a zinc 
oxide eugenol-based (ZOE) cement or glass 
polyalkenoate cements (GIC) are used to layer 
over MTA, detrimental microstructural changes 
occur in the latter material. With ZOE, zinc 
inhibits cement hydration and thus a layer of 
unset MTA is present at the material interface. 
With GIC, the acidity disrupts the microstructure 
of MTA.72 When placing composite resin over 
MTA, the use of a bonding agent is important 
to avoid changes at the material interface.73 
The placement of bonding agent over partially 
set MTA allows for immediate tooth restoration 
with composite resin. Other literature suggested 
that the placement of a restoration should 
be delayed until the MTA is fully set.74 The 
placement of a wet cotton pellet to cover the 
MTA surface until material reaches the final set is 
thus recommended. 

Figure 6. Peri-apical radiographs showing UR7. 
(a) Taken immediately post-obturation and (b) 
after the furcal perforation had been repaired 
with Biodentine (Septodont) and the access 
cavity definitively restored.

a

b

Figure 7. (a) The pre-operative peri-apical 
radiograph of UL6 showing the peri-radicular 
radiolucency on the mesio-buccal root. (b) 
The post-operative peri-apical radiograph of 
UL6 following the root-end microsurgery and 
placement of a root-end filling using ProRoot 
MTA (Dentsply Sirona) in the mesio-buccal root. 
Peri-apical radiographs taken after (c) 1 year and 
(d) 4 years, respectively, after root-end surgery 
on the mesio-buccal root of UL6. Note the peri-
radicular healing achieved.

a

b

c

d

Section summary
Hydraulic cements used in extra-radicular 
situations are placed in contact with the peri-
radicular tissues. The physical and biological 
properties of such cements are conducive in 
these indications, and their use has contributed 
to the improved prognosis of such procedures 
seen in recent years.

Clinical cases 

Perforation repair
A 58-year-old male patient was referred by 
his GDP who could not locate two of the 
three root canals, and had perforated into the 
furcation of UR7. This tooth was important 
because it was the distal abutment of the 
three-unit conventional bridge in the upper 
right quadrant. The previously undiscovered 
root canals were located using an operating 
microscope, and following thorough chemo-
mechanical preparation of the root canal 
system, the root canals were obturated 
using GP and BioRoot RCS (Septodont). The 
perforation was repaired with Biodentine 
(Septodont) at the same appointment as the 
obturation of the root canals. A coronal seal 
was established using Vitrebond Plus (3M) 
and the access cavity restored with resin 
composite (Figure 6).

Root-end filling
A 47-year-old female patient presented with 
pain localized to UL6. She had had extensive 
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endodontics and fixed prosthodontics 
performed in Russia some years earlier. 
Radiographically, there was a peri-apical 
radiolucency associated with the mesio-buccal 
root of UL6 and a diagnosis of acute on chronic 
peri-radicular periodontitis was made (Figure 
7a). Peri-radicular microsurgery was identified 
as the treatment of choice given the presence 
of the extensive restoration and risks of 
dismantling the tooth to attempt an orthograde 
approach. ProRoot MTA (Dentsply Sirona) 
was chosen as the root-end material (Figure 
7b). Radiographic monitoring at appropriate 
intervals continues, and there is evidence of 
peri-radicular healing (Figure 7c,d).

Clinical performance
There is very limited information on the 
clinical performance of MTA used to repair root 
perforations. MTA used as a root-end filling 
material using a microsurgical approach is 
associated with high success rates.75 However, 
regardless of the hydraulic nature and claimed 
superior properties, MTA used for this indication 
exhibits similar clinical outcomes as IRM 
(Dentsply)76,77 and Super-EBA cement (Bosworth, 
Skokie, IL, USA),78 even in the long term.79 

Conclusion
The physical and biological properties of the 
hydraulic cements are such that they can be used 
in a range of endodontic procedures. They set 
in the presence of water and do not deteriorate 
when wet. This article has illustrated the use of 
such materials in various endodontic procedures, 
namely intra-radicularly (root canal sealer and 
apical plug) and extra-radicularly (perforation 
repair and root-end filler). Their efficacy and 
clinical performance are supported by an 
increasing body of evidence. 
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